Wind turbine wake simulation with explicit algebraic Reynolds stress modeling

نویسندگان

چکیده

Abstract. Reynolds-averaged Navier–Stokes (RANS) simulations of wind turbine wakes are usually conducted with two-equation turbulence models based on the Boussinesq hypothesis; these simple and robust but lack capability predicting various phenomena. Using explicit algebraic Reynolds stress model (EARSM) Wallin Johansson (2000) can alleviate some deficiencies while still being numerically only slightly more computationally expensive than traditional models. The implementation is verified homogeneous shear flow, half-channel square duct flow cases, subsequently full three-dimensional wake run analyzed. results compared reference large-eddy simulation (LES) data, which show that EARSM especially improves prediction anisotropy intensity it also predicts less Gaussian profile shapes.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study on the Wake of a Miniature Wind Turbine Using the Reynolds Stress Model

The Reynolds Stress Model (RSM) is adopted to simulate the wind turbine wake and the simulation results are compared with the wind tunnel test data, simulation results from the standard k-ε model and a modified k-ε model. RSM shows good performance in predicting the turbine wakes velocity, turbulence intensity and the kinetic shear stress, while the k-ε based models fail to predict either wakes...

متن کامل

3D-simulation of the turbulent wake behind a wind turbine

The paper relates to the simulation of the airflow around a wind turbine (WT) of the type ENERCON E66 with emphasis on the turbulent wake. The simulations were undertaken with the Computational Fluid Dynamics (CFD) software ANSYS FLUENT 6.3 using the LES technique for turbulence modeling. It is the aim of the work to capture the full threedimensional turbulent flow behind a WT in a sufficient s...

متن کامل

Fully-Explicit and Self-Consistent Algebraic Reynolds Stress Model

A fully-explicit, self-consistent algebraic expression for the Reynolds stress, which is the exact solution to the Reynolds stress transport equation in the `weak equilibrium' limit for twodimensional mean ows for all linear and some quasi-linear pressure-strain models, is derived. Current explicit algebraic Reynolds stress models derived by employing the `weak equilibrium' assumption treat the...

متن کامل

CFD Wake Modelling with a BEM Wind Turbine Sub-Model

Modelling of wind farms using computational fluid dynamics (CFD) resolving the flow field around each wind turbine’s blades on a moving computational grid is still too costly and time consuming in terms of computational capacity and effort. One strategy is to use sub-models for the wind turbines, and sub-grid models for turbulence production and dissipation to model the turbulent viscosity accu...

متن کامل

Large-eddy simulation of spectral coherence in a wind turbine wake

This work is mainly dedicated to the study of the characteristics of spectral coherence of turbulence fluctuations in wind turbine wakes. A computational fluid dynamics (CFD) code has been implemented using a large-eddy simulation (LES) approach, which is thought to be conceptually more suitable for studying the turbulence evolution in a wind turbine wake. Comparisons with experimental data fro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Wind energy science

سال: 2022

ISSN: ['2366-7451', '2366-7443']

DOI: https://doi.org/10.5194/wes-7-1975-2022